Arduino Nano als ISP Programmiergerät

Der bisher ausgelieferte Arduino Nano hat einen Nachteil, er wird mit einem anderen Bootloader ausgeliefert. Durch diesen steht dem Benutzer weniger Speicher für Programme zur Verfügung. Die Atmega328P Prozessoren auf dem Arduino UNO R3 Board haben bereits das OptiBoot Rom darauf.

Leider kann man auf dem Atmega328P auf einem Nano Board nicht einfach über die serielle Schnittstelle ein neues Bootrom darauf flashen. Dies geht über den ICSP Bus, wie am Arduino UNO R3 auch. Allerdings braucht man dafür ein eigenes Gerät. Hat man einen zweiten Arduino Nano oder Uno, so kann man den einen Arduino mit dem anderem am ISP Bus verbinden und flashen.

 

Nano Programmiergerät an USB Nano flashen
GND GND
5V VIn
13 13
12 12
11 11
10 Reset

Den Arduino, den man als Programmierer verwenden will, benötigt nun nur noch eine spezielle Software. Diese ist bereits bei den Beispielen von der Arduino IDE enthalten: Datei->Beispiele->ArduinoISP.



// ArduinoISP version 04m3
// Copyright (c) 2008-2011 Randall Bohn
// If you require a license, see
//     http://www.opensource.org/licenses/bsd-license.php
//
// This sketch turns the Arduino into a AVRISP
// using the following arduino pins:
//
// pin name:    not-mega:         mega(1280 and 2560)
// slave reset: 10:               53
// MOSI:        11:               51
// MISO:        12:               50
// SCK:         13:               52
//
// Put an LED (with resistor) on the following pins:
// 9: Heartbeat   - shows the programmer is running
// 8: Error       - Lights up if something goes wrong (use red if that makes sense)
// 7: Programming - In communication with the slave
//
// 23 July 2011 Randall Bohn
// -Address Arduino issue 509 :: Portability of ArduinoISP
// http://code.google.com/p/arduino/issues/detail?id=509
//
// October 2010 by Randall Bohn
// - Write to EEPROM > 256 bytes
// - Better use of LEDs:
// -- Flash LED_PMODE on each flash commit
// -- Flash LED_PMODE while writing EEPROM (both give visual feedback of writing progress)
// - Light LED_ERR whenever we hit a STK_NOSYNC. Turn it off when back in sync.
// - Use pins_arduino.h (should also work on Arduino Mega)
//
// October 2009 by David A. Mellis
// - Added support for the read signature command
//
// February 2009 by Randall Bohn
// - Added support for writing to EEPROM (what took so long?)
// Windows users should consider WinAVR's avrdude instead of the
// avrdude included with Arduino software.
//
// January 2008 by Randall Bohn
// - Thanks to Amplificar for helping me with the STK500 protocol
// - The AVRISP/STK500 (mk I) protocol is used in the arduino bootloader
// - The SPI functions herein were developed for the AVR910_ARD programmer
// - More information at http://code.google.com/p/mega-isp

#include "pins_arduino.h"
#define RESET     SS

#define LED_HB    9
#define LED_ERR   8
#define LED_PMODE 7
#define PROG_FLICKER true

#define HWVER 2
#define SWMAJ 1
#define SWMIN 18

// STK Definitions
#define STK_OK      0x10
#define STK_FAILED  0x11
#define STK_UNKNOWN 0x12
#define STK_INSYNC  0x14
#define STK_NOSYNC  0x15
#define CRC_EOP     0x20 //ok it is a space...

void pulse(int pin, int times);

void setup() {
Serial.begin(19200);
pinMode(LED_PMODE, OUTPUT);
pulse(LED_PMODE, 2);
pinMode(LED_ERR, OUTPUT);
pulse(LED_ERR, 2);
pinMode(LED_HB, OUTPUT);
pulse(LED_HB, 2);
}

int error = 0;
int pmode = 0;
// address for reading and writing, set by 'U' command
int here;
uint8_t buff[256]; // global block storage

#define beget16(addr) (*addr * 256 + *(addr+1) )
typedef struct param {
uint8_t devicecode;
uint8_t revision;
uint8_t progtype;
uint8_t parmode;
uint8_t polling;
uint8_t selftimed;
uint8_t lockbytes;
uint8_t fusebytes;
int flashpoll;
int eeprompoll;
int pagesize;
int eepromsize;
int flashsize;
}
parameter;

parameter param;

// this provides a heartbeat on pin 9, so you can tell the software is running.
uint8_t hbval = 128;
int8_t hbdelta = 8;
void heartbeat() {
if (hbval > 192) hbdelta = -hbdelta;
if (hbval < 32) hbdelta = -hbdelta;
hbval += hbdelta;
analogWrite(LED_HB, hbval);
delay(20);
}

void loop(void) {
// is pmode active?
if (pmode) digitalWrite(LED_PMODE, HIGH);
else digitalWrite(LED_PMODE, LOW);
// is there an error?
if (error) digitalWrite(LED_ERR, HIGH);
else digitalWrite(LED_ERR, LOW);

// light the heartbeat LED
heartbeat();
if (Serial.available()) {
avrisp();
}
}

uint8_t getch() {
while (!Serial.available());
return Serial.read();
}
void fill(int n) {
for (int x = 0; x < n; x++) {
buff[x] = getch();
}
}

#define PTIME 30
void pulse(int pin, int times) {
do {
digitalWrite(pin, HIGH);
delay(PTIME);
digitalWrite(pin, LOW);
delay(PTIME);
}
while (times--);
}

void prog_lamp(int state) {
if (PROG_FLICKER)
digitalWrite(LED_PMODE, state);
}

void spi_init() {
uint8_t x;
SPCR = 0x53;
x = SPSR;
x = SPDR;
}

void spi_wait() {
do {
}
while (!(SPSR & (1 << SPIF)));
}

uint8_t spi_send(uint8_t b) {
uint8_t reply;
SPDR = b;
spi_wait();
reply = SPDR;
return reply;
}

uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
uint8_t n;
spi_send(a);
n = spi_send(b);
//if (n != a) error = -1;
n = spi_send(c);
return spi_send(d);
}

void empty_reply() {
if (CRC_EOP == getch()) {
Serial.print((char)STK_INSYNC);
Serial.print((char)STK_OK);
}
else {
error++;
Serial.print((char)STK_NOSYNC);
}
}

void breply(uint8_t b) {
if (CRC_EOP == getch()) {
Serial.print((char)STK_INSYNC);
Serial.print((char)b);
Serial.print((char)STK_OK);
}
else {
error++;
Serial.print((char)STK_NOSYNC);
}
}

void get_version(uint8_t c) {
switch (c) {
case 0x80:
breply(HWVER);
break;
case 0x81:
breply(SWMAJ);
break;
case 0x82:
breply(SWMIN);
break;
case 0x93:
breply('S'); // serial programmer
break;
default:
breply(0);
}
}

void set_parameters() {
// call this after reading paramter packet into buff[]
param.devicecode = buff[0];
param.revision   = buff[1];
param.progtype   = buff[2];
param.parmode    = buff[3];
param.polling    = buff[4];
param.selftimed  = buff[5];
param.lockbytes  = buff[6];
param.fusebytes  = buff[7];
param.flashpoll  = buff[8];
// ignore buff[9] (= buff[8])
// following are 16 bits (big endian)
param.eeprompoll = beget16(&buff[10]);
param.pagesize   = beget16(&buff[12]);
param.eepromsize = beget16(&buff[14]);

// 32 bits flashsize (big endian)
param.flashsize = buff[16] * 0x01000000
+ buff[17] * 0x00010000
+ buff[18] * 0x00000100
+ buff[19];

}

void start_pmode() {
spi_init();
// following delays may not work on all targets...
pinMode(RESET, OUTPUT);
digitalWrite(RESET, HIGH);
pinMode(SCK, OUTPUT);
digitalWrite(SCK, LOW);
delay(50);
digitalWrite(RESET, LOW);
delay(50);
pinMode(MISO, INPUT);
pinMode(MOSI, OUTPUT);
spi_transaction(0xAC, 0x53, 0x00, 0x00);
pmode = 1;
}

void end_pmode() {
pinMode(MISO, INPUT);
pinMode(MOSI, INPUT);
pinMode(SCK, INPUT);
pinMode(RESET, INPUT);
pmode = 0;
}

void universal() {
int w;
uint8_t ch;

fill(4);
ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]);
breply(ch);
}

void flash(uint8_t hilo, int addr, uint8_t data) {
spi_transaction(0x40 + 8 * hilo,
addr >> 8 & 0xFF,
addr & 0xFF,
data);
}
void commit(int addr) {
if (PROG_FLICKER) prog_lamp(LOW);
spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0);
if (PROG_FLICKER) {
delay(PTIME);
prog_lamp(HIGH);
}
}

//#define _current_page(x) (here & 0xFFFFE0)
int current_page(int addr) {
if (param.pagesize == 32)  return here & 0xFFFFFFF0;
if (param.pagesize == 64)  return here & 0xFFFFFFE0;
if (param.pagesize == 128) return here & 0xFFFFFFC0;
if (param.pagesize == 256) return here & 0xFFFFFF80;
return here;
}

void write_flash(int length) {
fill(length);
if (CRC_EOP == getch()) {
Serial.print((char) STK_INSYNC);
Serial.print((char) write_flash_pages(length));
}
else {
error++;
Serial.print((char) STK_NOSYNC);
}
}

uint8_t write_flash_pages(int length) {
int x = 0;
int page = current_page(here);
while (x < length) {
if (page != current_page(here)) {
commit(page);
page = current_page(here);
}
flash(LOW, here, buff[x++]);
flash(HIGH, here, buff[x++]);
here++;
}

commit(page);

return STK_OK;
}

#define EECHUNK (32)
uint8_t write_eeprom(int length) {
// here is a word address, get the byte address
int start = here * 2;
int remaining = length;
if (length > param.eepromsize) {
error++;
return STK_FAILED;
}
while (remaining > EECHUNK) {
write_eeprom_chunk(start, EECHUNK);
start += EECHUNK;
remaining -= EECHUNK;
}
write_eeprom_chunk(start, remaining);
return STK_OK;
}
// write (length) bytes, (start) is a byte address
uint8_t write_eeprom_chunk(int start, int length) {
// this writes byte-by-byte,
// page writing may be faster (4 bytes at a time)
fill(length);
prog_lamp(LOW);
for (int x = 0; x < length; x++) {
int addr = start + x;
spi_transaction(0xC0, (addr >> 8) & 0xFF, addr & 0xFF, buff[x]);
delay(45);
}
prog_lamp(HIGH);
return STK_OK;
}

void program_page() {
char result = (char) STK_FAILED;
int length = 256 * getch();
length += getch();
char memtype = getch();
// flash memory @here, (length) bytes
if (memtype == 'F') {
write_flash(length);
return;
}
if (memtype == 'E') {
result = (char)write_eeprom(length);
if (CRC_EOP == getch()) {
Serial.print((char) STK_INSYNC);
Serial.print(result);
}
else {
error++;
Serial.print((char) STK_NOSYNC);
}
return;
}
Serial.print((char)STK_FAILED);
return;
}

uint8_t flash_read(uint8_t hilo, int addr) {
return spi_transaction(0x20 + hilo * 8,
(addr >> 8) & 0xFF,
addr & 0xFF,
0);
}

char flash_read_page(int length) {
for (int x = 0; x < length; x += 2) {
uint8_t low = flash_read(LOW, here);
Serial.print((char) low);
uint8_t high = flash_read(HIGH, here);
Serial.print((char) high);
here++;
}
return STK_OK;
}

char eeprom_read_page(int length) {
// here again we have a word address
int start = here * 2;
for (int x = 0; x < length; x++) {
int addr = start + x;
uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF);
Serial.print((char) ee);
}
return STK_OK;
}

void read_page() {
char result = (char)STK_FAILED;
int length = 256 * getch();
length += getch();
char memtype = getch();
if (CRC_EOP != getch()) {
error++;
Serial.print((char) STK_NOSYNC);
return;
}
Serial.print((char) STK_INSYNC);
if (memtype == 'F') result = flash_read_page(length);
if (memtype == 'E') result = eeprom_read_page(length);
Serial.print(result);
return;
}

void read_signature() {
if (CRC_EOP != getch()) {
error++;
Serial.print((char) STK_NOSYNC);
return;
}
Serial.print((char) STK_INSYNC);
uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00);
Serial.print((char) high);
uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00);
Serial.print((char) middle);
uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00);
Serial.print((char) low);
Serial.print((char) STK_OK);
}
//////////////////////////////////////////
//////////////////////////////////////////

////////////////////////////////////
////////////////////////////////////
int avrisp() {
uint8_t data, low, high;
uint8_t ch = getch();
switch (ch) {
case '0': // signon
error = 0;
empty_reply();
break;
case '1':
if (getch() == CRC_EOP) {
Serial.print((char) STK_INSYNC);
Serial.print("AVR ISP");
Serial.print((char) STK_OK);
}
break;
case 'A':
get_version(getch());
break;
case 'B':
fill(20);
set_parameters();
empty_reply();
break;
case 'E': // extended parameters - ignore for now
fill(5);
empty_reply();
break;

case 'P':
start_pmode();
empty_reply();
break;
case 'U': // set address (word)
here = getch();
here += 256 * getch();
empty_reply();
break;

case 0x60: //STK_PROG_FLASH
low = getch();
high = getch();
empty_reply();
break;
case 0x61: //STK_PROG_DATA
data = getch();
empty_reply();
break;

case 0x64: //STK_PROG_PAGE
program_page();
break;

case 0x74: //STK_READ_PAGE 't'
read_page();
break;

case 'V': //0x56
universal();
break;
case 'Q': //0x51
error = 0;
end_pmode();
empty_reply();
break;

case 0x75: //STK_READ_SIGN 'u'
read_signature();
break;

// expecting a command, not CRC_EOP
// this is how we can get back in sync
case CRC_EOP:
error++;
Serial.print((char) STK_NOSYNC);
break;

// anything else we will return STK_UNKNOWN
default:
error++;
if (CRC_EOP == getch())
Serial.print((char)STK_UNKNOWN);
else
Serial.print((char)STK_NOSYNC);
}
}


 

Nach dem Daraufspielen der Software auf den ISP Programmier Arduino kann nun der zweite Arduino geflasht werden. Hierzu wählt man in der Arduino IDE  unter Werkzeuge->Programmer->Arduino As ISP aus anstatt AVRISP mkII.

Hier kommt jetzt der Trick, für den ich aber keine Gewähr geben kann. Anstatt unter Werkzeuge->Platine->Arduino Nano auszuwählen, wählt man den Arduino UNO aus. Dies hat damit zu tun, dass der Nano im Arduino IDE arduino-1.6.4\hardware\arduino\avr\Boards.txt File nicht den Optiboot stehen hat, sondern eben der Arduino UNO. Anschließend können die Programme alle über die Arduino IDE über Arduino UNO auf den Nao eingespielt werden.

Falls man sich aber nicht sicher ist, kann man auch die Datei arduino-1.6.4\hardware\arduino\avr\Boards.txt File mit dem folgenden Anhang erweitern:


 

atmega328o.name=[Optiboot] Arduino Duemilanove or Nano w/ ATmega328
atmega328o.upload.protocol=arduino
atmega328o.upload.maximum_size=32256
atmega328o.upload.speed=115200
atmega328o.bootloader.low_fuses=0xff
atmega328o.bootloader.high_fuses=0xde
atmega328o.bootloader.extended_fuses=0x05
atmega328o.bootloader.path=optiboot
atmega328o.bootloader.file=optiboot_atmega328.hex
atmega328o.bootloader.unlock_bits=0x3F
atmega328o.bootloader.lock_bits=0x0F
atmega328o.build.mcu=atmega328p
atmega328o.build.f_cpu=16000000L
atmega328o.build.core=arduino:arduino
atmega328o.build.variant=arduino:standard


 

Nun erscheint unter Werkzeuge->Platine->[Optiboot] Arduino Duemilanove or Nano w/ ATmega328, das man auswählen kann.

Dann wird der Bootloader unter Werkzeuge->Programmer->Bootloader brennen übertragen. Nach ein paar Sekunden ist das neue Bootrom darauf.

Update 14.04.2020

Anscheinend muss an manchen Arduino Nano Boards ein 10µF Kondensator zwischen RST und GND des Programmiergerätes angebracht werden.

Link:
https://github.com/Optiboot/optiboot

 

2 Kommentare zu „Arduino Nano als ISP Programmiergerät

  1. Danke, hat mir sehr geholfen. Meine Nanos funktionieren wieder.

    Like

  2. Anleitung enthält leider einige aufhaltende Fehler.
    1. Man muss wählen „Arduino As ISP“ und nicht „ArduinoISP“
    2. Man muss einen 10uF-Kondensator in den Master-Arduino einlöten zwischen Reset und Gnd, wobei das kurze Bein zu GND gehört.

    Like

Hinterlasse einen Kommentar

Diese Seite verwendet Akismet, um Spam zu reduzieren. Erfahre, wie deine Kommentardaten verarbeitet werden..

search previous next tag category expand menu location phone mail time cart zoom edit close