Kohonen Self Organizing Map (SOM)

Unter den selbsorganisierten Karten bezeichnet man eine Art von neuronalen Netzen, die anhand einer Menge von Trainingsdaten eine bestimmte n-diemsionale Topologie erzeugen, wie man sie auch im Gehirn findet. Dieses Lernverfahren gehört zu den unüberwachten.

// written by André Betz
// http://www.andrebetz.de

#include <windows.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#define PI 3.14279

class SOMClassifier
{
public:
~SOMClassifier();
SOMClassifier(    unsigned long* ulSite,unsigned long ulVecLen,unsigned long ulDim,
unsigned long ulMax,unsigned long ulMin,double dDist,double dEta,
double dDistDec, double dEtaDec);
unsigned long Step(double* pdPat);
double*            m_pdMap;
protected:
double            m_dDist;
double            m_dEta;
double            m_dDistDec;
double            m_dEtaDec;
unsigned long*    m_pulSite;
unsigned long    m_ulDim;
unsigned long    m_ulVecLen;
unsigned long    m_ulNeurons;
unsigned long    m_ulMin;
unsigned long    m_ulMax;
unsigned long    m_ulNghbFunc;

unsigned long Learn(double* pdDataPtr,unsigned long ulWinPos);
unsigned long MinDistance(double* pdDataPtr,unsigned long* pulWinPos);
unsigned long Nghb(unsigned long ulWinPos, unsigned long ulNeuPos, double* pdDist);
unsigned long L2Norm(double* pdVec1, double* pdVec2, double* pdDistance);
};

SOMClassifier::~SOMClassifier()
{
delete m_pulSite;
delete m_pdMap;
}

SOMClassifier::    SOMClassifier(unsigned long* ulSite,unsigned long ulVecLen,unsigned long ulDim,
unsigned long ulMax,unsigned long ulMin,double dDist,double dEta,
double dDistDec, double dEtaDec)
{
unsigned long    ulCountNeu;

m_ulNghbFunc= 3;
m_ulMin        = ulMin;
m_ulMax        = ulMax;
m_dEta        = dEta;
m_dDist        = dDist;
m_ulDim     = ulDim;
m_ulVecLen    = ulVecLen;
m_dDistDec    = dDistDec;
m_dEtaDec    = dEtaDec;
m_pulSite    = new unsigned long[m_ulDim];

for(ulCountNeu=0;ulCountNeu<m_ulDim;ulCountNeu++)
{
m_pulSite[ulCountNeu] = ulSite[ulCountNeu];

if(ulCountNeu)
{
m_ulNeurons    *=    m_pulSite[ulCountNeu];
}
else
{
m_ulNeurons = m_pulSite[ulCountNeu];
}
}

m_pdMap = new double[m_ulNeurons*m_ulVecLen];

for(ulCountNeu=0;ulCountNeu<(m_ulNeurons*ulVecLen);ulCountNeu++)
{
m_pdMap[ulCountNeu] = (double)(ulMin + rand()%ulMax);
}
}

unsigned long SOMClassifier::Step(double* pdPat)
{
unsigned long    ulWinPos;

MinDistance(pdPat,&ulWinPos);
Learn(pdPat,ulWinPos);

return ulWinPos;
}

unsigned long SOMClassifier::Learn(double* pdPat,unsigned long ulWinPos)
{
unsigned long    ulCountVec;
unsigned long    ulCountNeu;
double            dDistance;

m_dDist                        *= m_dDistDec;
if(m_dEta > 0.02) m_dEta    *= m_dEtaDec;

for(ulCountNeu=0;ulCountNeu<m_ulNeurons;ulCountNeu++)
{
Nghb(ulWinPos,ulCountNeu,&dDistance);
for(ulCountVec=0;ulCountVec<m_ulVecLen;ulCountVec++)
{
m_pdMap[ulCountNeu*m_ulVecLen+ulCountVec] += dDistance * m_dEta *
(pdPat[ulCountVec] - m_pdMap[ulCountNeu*m_ulVecLen+ulCountVec]);
}
}

return 0;
}

unsigned long SOMClassifier::Nghb(unsigned long ulWinPos,unsigned long ulNeuPos,double* pdDist)
{
unsigned long    ulCount;
unsigned long    ulSiteNeu;
unsigned long    ulSiteWin;
unsigned long    ulSize;
double            dTemp;

*pdDist        = 0.0f;
ulSiteWin    = ulWinPos;
ulSiteNeu    = ulNeuPos;
ulSize        = m_ulNeurons;

for(ulCount=m_ulDim;ulCount>0;ulCount--)
{
ulSize /= m_pulSite[ulCount-1];

*pdDist +=    (ulSiteWin / ulSize - ulSiteNeu / ulSize) *
(ulSiteWin / ulSize - ulSiteNeu / ulSize);

ulSiteWin %= ulSize;
ulSiteNeu %= ulSize;
}

*pdDist = sqrt(*pdDist);

if(m_ulNghbFunc==1)
{
if(*pdDist<m_dDist)    *pdDist = 1.0f;
else                *pdDist = 0.0f;
}
else if(m_ulNghbFunc==2)
{
dTemp = (*pdDist / m_dDist)*(*pdDist / m_dDist);
*pdDist = (1-dTemp)*exp(-dTemp);
}
else if(m_ulNghbFunc==3)
{
dTemp = (*pdDist / m_dDist)*(*pdDist / m_dDist);
*pdDist = exp(-dTemp);
}
else if(m_ulNghbFunc==4)
{
dTemp = 1 - *pdDist / m_dDist;
if(*pdDist<m_dDist)    *pdDist = dTemp;
else                *pdDist = 0.0f;
}
else if(m_ulNghbFunc==5)
{
dTemp = cos((*pdDist/m_dDist)*(PI/2));
if(*pdDist<m_dDist)    *pdDist = dTemp;
else                *pdDist = 0.0f;
}

return 0;
}

unsigned long SOMClassifier::MinDistance(double* pdPat,unsigned long* pulNeuPos)
{
unsigned long    ulCountNeu;
double            dDistance;
double            dResult;

for(ulCountNeu=0;ulCountNeu<m_ulNeurons;ulCountNeu++)
{
L2Norm(pdPat,&m_pdMap[ulCountNeu*m_ulVecLen],&dDistance);
if((ulCountNeu==0)||(dDistance < dResult))
{
dResult        = dDistance;
*pulNeuPos    = ulCountNeu;
}
}

return 0;
}

unsigned long SOMClassifier::L2Norm(double* pdVec1, double* pdVec2, double* pdDistance)
{
unsigned long    ulCountVec;

*pdDistance = 0.0f;

for(ulCountVec=0;ulCountVec<m_ulVecLen;ulCountVec++)
{
*pdDistance +=    (pdVec1[ulCountVec] - pdVec2[ulCountVec]) *
(pdVec1[ulCountVec] - pdVec2[ulCountVec]);
}

*pdDistance = sqrt(*pdDistance);

return 0;
}


unsigned long    Sites[]    = {20,20};
unsigned long    VecLen    = 2;
unsigned long    Train    = 0;
unsigned long    TrShw    = 1;
unsigned long    wx        = 400;
unsigned long    wy        = 400;

SOMClassifier    som(Sites,VecLen,2,wx,0,10.0,0.15,1.0,1.0);

int Show(HWND hwnd)
{
double            Vec[2];
char            Number[] = "000000";
unsigned long    x,y;
HDC                hdcWindow;
HBRUSH            brush;
HRGN            hrgn;
BOOL            t;

Vec[0] = (double)(rand() % wx);
Vec[1] = (double)(rand() % wy);

som.Step(Vec);

if(!(Train%TrShw))
{
hdcWindow = GetDC(hwnd);

hrgn = CreateRectRgn(0,0,wx,wy);
brush = CreateHatchBrush(HS_BDIAGONAL,0x00ffffff);
t = FillRgn(hdcWindow,hrgn,brush);

for(y=0;y<Sites[1];y++)
{
for(x=0;x<Sites[0];x++)
{
if(x<Sites[0]-1)
{
MoveToEx(hdcWindow,    (int)som.m_pdMap[(x+Sites[1]*y)        *VecLen],
(int)som.m_pdMap[(x+Sites[1]*y)        *VecLen+1],NULL);
LineTo(hdcWindow,    (int)som.m_pdMap[(x+Sites[1]*y+1)    *VecLen],
(int)som.m_pdMap[(x+Sites[1]*y+1)    *VecLen+1]);
}

if(y<Sites[1]-1)
{
MoveToEx(hdcWindow,    (int)som.m_pdMap[(x+Sites[1]*y)        *VecLen],
(int)som.m_pdMap[(x+Sites[1]*y)        *VecLen+1],NULL);
LineTo(hdcWindow,    (int)som.m_pdMap[(x+Sites[1]*(y+1))    *VecLen],
(int)som.m_pdMap[(x+Sites[1]*(y+1))    *VecLen+1]);
}
}
}

wsprintf(Number,"%d",Train);
TextOut(hdcWindow,0,0,Number,strlen(Number));

ReleaseDC(hwnd,hdcWindow);
}

Train++;

return 0;
}

LRESULT CALLBACK WndProc(HWND hwnd,UINT Message,WPARAM wParam,LPARAM lParam)
{
switch(Message)
{
case WM_CLOSE:
DestroyWindow(hwnd);
break;
case WM_DESTROY:
PostQuitMessage(0);
break;
case WM_TIMER:
Show(hwnd);
break;

default:
return DefWindowProc(hwnd, Message, wParam, lParam);
}
return 0;
}

int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int nCmdShow)
{
WNDCLASSEX        WndClass;
HWND            hwnd;
MSG                Msg;
char            ClassName[] = "MyWindowClass";
UINT            idTimer1    = 1;
UINT            nTimerDelay = 1;

srand((unsigned int)time(NULL));

WndClass.cbSize        = sizeof(WNDCLASSEX);
WndClass.style         = NULL;
WndClass.lpfnWndProc   = WndProc;
WndClass.cbClsExtra    = 0;
WndClass.cbWndExtra    = 0;
WndClass.hInstance     = hInstance;
WndClass.hIcon         = LoadIcon(NULL, IDI_APPLICATION);
WndClass.hCursor       = LoadCursor(NULL, IDC_ARROW);
WndClass.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
WndClass.lpszMenuName  = NULL;
WndClass.lpszClassName = ClassName;
WndClass.hIconSm       = LoadIcon(NULL, IDI_APPLICATION);

RegisterClassEx(&WndClass);
hwnd = CreateWindowEx(WS_EX_CLIENTEDGE,ClassName,"2D-SOM  Betz99",WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,CW_USEDEFAULT,wx,wy,NULL,NULL,hInstance,NULL);

ShowWindow(hwnd,nCmdShow);
UpdateWindow(hwnd);

SetTimer(hwnd,idTimer1,nTimerDelay,NULL);

while(GetMessage(&Msg,NULL,0,0))
{
TranslateMessage(&Msg);
DispatchMessage(&Msg);
}

KillTimer(hwnd, idTimer1);

return Msg.wParam;
}


Werbung

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

Diese Seite verwendet Akismet, um Spam zu reduzieren. Erfahre, wie deine Kommentardaten verarbeitet werden..

%d Bloggern gefällt das:
search previous next tag category expand menu location phone mail time cart zoom edit close